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Fewer than 1% of the available protein sequences are currently 
annotated with reliable information, and the gap between 
unannotated and annotated sequences is widening at an 

unprecedented rate1 (Supplementary Note 1). Traditional experi-
mental approaches to determine protein function are usually 
expensive, time-consuming and provide low throughput. Although 
higher-throughput approaches have recently been developed, they 
are also proving to be insufficient to cope with the sheer number 
of new sequences produced by next-generation sequencing tech-
niques2. In this context, the computational annotation of protein 
function has become a crucial step in achieving a better under-
standing of the complex mechanisms of living cells.

Newly sequenced organisms represent a particularly difficult 
challenge for automated annotation methods because only their 
protein sequences are available and, in general, we lack any other 
data derived from large-scale functional experiments. In fact, 
protein function prediction is somewhat easier for more studied 
organisms, including model organisms, where multiple types of 
functional experimental evidence (for example, gene expression, 
proteomics data) are available that can be integrated with sequence 
information. The Critical Assessment of Functional Annotation 
Challenge (CAFA)3 has indeed shown that advanced methods that 
integrate multiple types of information for the prediction of Gene 
Ontology (GO)4 terms substantially outperform methods that use 
only sequence information.

Network propagation approaches have been shown to be among 
the most successful methods to predict protein function when some 
sort of experimental evidence is available5. These methods com-
bine and amplify existing knowledge about the function of some 
of the proteins by propagating it through networks where nodes 
represent proteins and edges represent pairwise functional rela-
tionships between them that are derived from experiments (for 
example, physical interaction, co-occurrence in protein complexes, 

co-expression). In other words, these methods expand an initial set 
of functional labels available for some experimentally characterized 
proteins (seeds) to related neighbouring proteins, thus exploiting the 
guilt-by-association principle, according to which highly connected 
nodes should share similar functional properties. However, until 
now, these ideas could not be applied to newly sequenced organisms, 
because in this case both the seeds and the networks are unavailable.

This Article introduces S2F (Sequence to Function), a novel 
network propagation-based method for the functional annotation 
of newly sequenced organisms. Our main idea is to systematically 
transfer functionally relevant data that are available for model 
organisms to newly sequenced organisms, thus allowing us to use 
network propagation to predict protein function. S2F presents a 
novel network propagation algorithm that can account for the pres-
ence of overlapping communities of proteins with related functions.

Because most newly sequenced organisms are bacteria, we 
have developed and tested our solutions in the context of bacte-
rial genomes. The Bacteria superkingdom is also the one with the 
most available sequenced proteins in UniProtKB (Supplementary 
Note 1), and the functional characterization of bacteria holds great 
potential in fields ranging from alternative energy sources to under-
standing and treating disease. However, the ideas presented here are 
more widely applicable to protein function prediction for any type 
of organism, and an earlier version of our algorithm has successfully 
been applied to organisms from other kingdoms3,6.

Results
The aim of S2F is to predict the function of each of the proteins 
in a newly sequenced organism. Functional categories are defined 
according to the GO4, where terms are organized in a hierarchical 
structure with several domains and levels of specificity. The predic-
tion of protein function is a multi-class, multi-label classification 
problem—multi-class, as there are over 40,000 possible GO terms 

Protein function prediction for newly sequenced 
organisms
Mateo Torres   1,4, Haixuan Yang   2,4, Alfonso E. Romero   3,4 and Alberto Paccanaro   1,3 ✉

Recent successes in protein function prediction have shown the superiority of approaches that integrate multiple types of 
experimental evidence over methods that rely solely on homology. However, newly sequenced organisms continue to rep-
resent a difficult challenge, because only their protein sequences are available and they lack data derived from large-scale 
experiments. Here we introduce S2F (Sequence to Function), a network propagation approach for the functional annotation of 
newly sequenced organisms. Our main idea is to systematically transfer functionally relevant data from model organisms to 
newly sequenced ones, thus allowing us to use a label propagation approach. S2F introduces a novel label diffusion algorithm 
that can account for the presence of overlapping communities of proteins with related functions. As most newly sequenced 
organisms are bacteria, we tested our approach in the context of bacterial genomes. Our extensive evaluation shows a great 
improvement over existing sequence-based methods, as well as four state-of-the-art general-purpose protein function pre-
diction methods. Our work demonstrates that employing a diffusion process over networks of transferred functional data is 
an effective way to improve predictions over simple homology. S2F is applicable to any type of newly sequenced organism as 
well as to those for which experimental evidence is available. A free, easy to run version of S2F is available at https://www.
paccanarolab.org/s2f.

NATuRE MAcHiNE iNTElligENcE | www.nature.com/natmachintell

mailto:alberto.paccanaro@rhul.ac.uk
http://orcid.org/0000-0002-9796-1742
http://orcid.org/0000-0002-8724-4192
http://orcid.org/0000-0001-8855-5569
http://orcid.org/0000-0001-8059-1346
https://www.paccanarolab.org/s2f
https://www.paccanarolab.org/s2f
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-021-00419-7&domain=pdf
http://www.nature.com/natmachintell


Articles NATuRe MAcHiNe iNTelligeNce

that can be annotated to a protein, and multi-label, because each 
protein can be annotated with multiple GO terms. Importantly, the 
hierarchical structure of the GO must be taken into account for 
the prediction, because whenever a protein is annotated with a GO 
term, it is also annotated with all its ancestor terms up to the root of 
the ontology (this is known as the ‘true path rule’7,8). Therefore, an 
important requirement for the output of any protein function pre-
diction method is to be consistent: if a GO term is predicted with a 
certain probability, its parent terms must be predicted with an equal 
or greater probability9.

S2F consists of four main components (Fig. 1):
 (1) A method to infer the initial seeds, which combines the output 

of InterPro10 and HMMER (http://hmmer.org/, version 3.1b2) 
to obtain a set of initial predictions that is consistent

 (2) A method for network transfer, which relies on the concept of 
interolog11,12 to infer several functional networks

 (3) A method for network combination, which combines the dif-
ferent functional networks into a single one

 (4) A label propagation algorithm, which diffuses the seed infor-
mation to obtain a prediction

In the following, we will describe each component in turn. 
We will assume that we wish to predict the function for a newly 
sequenced organism (target organism) with n proteins, and that the 
GO contains t terms.

S2F seed inference. InterPro10 constitutes an excellent starting point 
for predicting protein function from its sequence as it provides pre-
dictions from 14 different protein signature databases. We consoli-
date its output into an n × t matrix of predictions R (Methods) that 
is consistent, and where each entry Rij is the fraction of InterPro 
models in which the (i, j) association is present.

Although InterPro predictions are extremely accurate, they 
are often limited in number and involve only a few GO terms. To 
enrich the catalogue of GO terms that appear in our initial seed set, 
HMMER (http://hmmer.org/, version 3.1b2) is run for every pro-
tein in the target organism against the experimentally annotated 
sequences in UniProtKB/Swiss-Prot (Supplementary Note 2). This 
results in the HMMER seed set, a binary matrix H of size (n × t), 
which is then up-propagated according to the true path rule7,8. A 
convex combination of H and R gives us the consistent combined 
seed set Y ∈ R

n×t:

Y = αR+ (1− α)H

where α ∈R, 0≤ α ≤ 1 controls the relative contribution of InterPro 
and HMMER predictions, and each entry of Y, 0≤Yij ≤ 1.

S2F network transfer. We build networks where nodes represent 
target organism proteins and edges represent pairwise functional 
relationships (interactions) between them. Because experimental 
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Fig. 1 | Overview of the S2F approach. The set of n protein sequences of the target organism (shown in red) constitutes the input to the system, and t 
is the total number of GO terms to be predicted. External datasets (STRING15, GOA17 and UniProtKB27) are shown in orange. Seed inference: on running 
HMMER on the input sequences against experimentally annotated sequences from UniProtKB/Swiss-Prot we obtain an (n × t) matrix H of predictions 
(the HMMER seed set). Running InterPro we obtain m matrices of predictions R(m), one per InterPro model, each of size (n × t). These matrices are 
then combined into a single (n × t) matrix R (the InterPro seed set). The combined seed set Y, which will be used for the label propagation, is a linear 
combination of H and R. Network transfer: a collection of networks is built by our interaction transfer procedure using known functional relationships 
between proteins in every organism from the STRING database. Network combination: transferred networks are linearly combined into a single network 
W. The weights of the linear combination are learned using an auxiliary target network built from R. Prediction: the network W and seed set Y are fed into 
our label propagation algorithm, which outputs the protein function prediction F, an (n × t) matrix where each row corresponds to a protein, each column 
corresponds to a GO term and each entry Fij is related to the probability for protein i to have function j. For a given protein i, its labels Fi are guaranteed to 
be consistent; that is, they satisfy the GO ‘true path rule’.
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evidence of functional relationships between proteins is not avail-
able for newly sequenced organisms, to create these networks we 
exploit the fact that these relationships are often conserved across 
species13,14. This allows us to transfer existing evidence from 
well-studied organisms to newly sequenced ones.

Our starting point is the seminal work by Yu et al.12, who trans-
ferred different types of functional network with high precision 
using the concept of interolog-mapping first proposed by Walhout 
and others11. The idea is that, given two proteins A and B in the 
target organism, if there exists a pair of proteins A′ and B′ that are 
known to interact in another organism (source organism), such that 
A is an orthologue of A′ and B is an orthologue of B′, then we can 
infer an interaction between A and B.

Our transfer algorithm derives from the one proposed by Yu 
et al.12 (details are provided in Methods and Supplementary Note 3). 
S2F uses STRING15 as the dataset of different types of experimen-
tal interactions in source organisms. For each type of interaction, 
S2F builds one transferred network, r, that can be represented as a 
matrix W(r)

∈R
n×n, where each entry W(r)

ij  represents the strength 
of the interaction between proteins i and j in r. For a given target 
organism, S2F transfers five types of interaction, namely ‘neigh-
borhood’, ‘experiments’, ‘co-expression’, ‘textmining’ and ‘database’, 
using the experimental interactions available for any organism  
in STRING.

S2F network combination. Having obtained a set of transferred 
networks for the target organism, we now face the task of combin-
ing them into a single network for diffusing the seeds. Our approach 
is to linearly combine the different networks through learned coef-
ficients. These coefficients provide us with interesting information 
about the relative importance and role of each network in the pre-
diction. Although other systems learn this combination (for exam-
ple, GeneMANIA16), the solution we propose here is applicable to 
our problem, where no initial set of known labels is available.

We begin by using the InterPro predictions to build a network of 
functional similarities T∈R

n×n, where the similarity between pro-
teins i and j, Tij, is defined as

Tij =

∣

∣Ni ∩ Nj
∣

∣

∣

∣Ni ∪ Nj
∣

∣

where Ni and Nj are the sets of all GO terms above a threshold τ 
that are associated to proteins i and j, respectively, in R; that is, 

Ni = {k|Rik > τ} and Nj =
{

k|Rjk > τ
}

. Therefore, Tij is the Jaccard 
similarity between sets of GO terms that are assigned by InterPro to 
proteins i and j.

Given p networks W(r) with r∈{1, …, p}, we combine them 
into a single network W∈R

n×n using a weighted linear combina-
tion, where the vector of weights ĉ∈R

p is learned by minimizing 
the square of the difference between T and the linear combination 
(Methods).

S2F label propagation. Proteins rarely perform their functions in 
isolation, but rather they act as part of functional groups. As men-
tioned earlier, network propagation methods for protein function 
prediction exploit exactly this fact—groups of proteins that are 
highly connected in functional networks form communities that 
share a similar function. Importantly, when a protein has more than 
one function, it will belong to more than one such functional group. 
We notice that such proteins, lying at the intersection of commu-
nities, are, in general, more functionally similar compared to their 
neighbours, because they share more functional roles. Therefore, 
when a set of proteins has more than one function, the propaga-
tion of information (or diffusion) between proteins within this set 
should be higher than the diffusion between proteins in this set and 
proteins outside this set. However, this does not happen with exist-
ing diffusion methods (for details see Supplementary Note 6). Here 
we propose a novel label propagation method that explicitly models 
overlapping communities and, in this way, corrects this problem.

We begin by defining the matrix WS2F
∈R

n×n, a transformation 
of the combined network W whose entry WS2F

ij  is defined as

WS2F
ij =

1
2

(

1
di

+
1
dj

)

JijWij

where di =
∑n

j=1JijWij and J is a weighted Jaccard similarity 
matrix that models the overlapping community effect (Methods). 
We also define a diagonal matrix DS2F where the ith diagonal ele-
ment DS2F

ii =
∑

jW
S2F
ij . Our algorithm produces a prediction matrix 

F∈R
n×t for all the n proteins of the organism and all the t GO 

terms by computing the following:

F = (I+ λL)−1Y

where Y is the matrix containing the initial labelling, I is the identity 
matrix, L = DS2F − WS2F is the Laplacian of WS2F, and λ > 0 is the regu-
larization parameter (Methods).

Table 1 | list of bacteria that satisfy the selection criteria, with number of genes and annotations

NcBi iD Name genes Experimentally 
annotated genes

BP terms with >3 
annotations

MF terms with >3 
annotations

cc terms with >3 
annotations

272624 Legionella pneumophila subsp. 
pneumophila Philadelphia 1

2,076 18 30 8 8

223283 Pseudomonas syringae pv. tomato 5,055 25 48 32 15

359391 Brucella abortus 2,229 26 17 8 14

99287 Salmonella typhimurium 3,764 116 183 46 24

198628 Dickeya dadantii 3,411 102 214 21 13

1111708 Synechocystis sp. 2,442 137 101 21 30

224308 Bacillus subtilis 3,410 375 301 120 24

208964 Pseudomonas aeruginosa 4,487 947 695 222 42

83332 Mycobacterium tuberculosis 3,284 1,027 797 280 45

83333 Escherichia coli 3,906 3,350 1,546 706 134

The number of terms with more than three annotations in each of the GO domains is calculated after up-propagation and therefore may be larger than the number of experimentally annotated genes. NCBI, 
National Center for Biotechnology Information; BP, biological process; MF, molecular function; CC, cellular component.
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Fig. 2 | Smin metric for every organism per gene and per term, with lower values being better. Comparison of HMMER, InterPro, HMMER + InterPro, 
S2F, Argot 2.5, DeepGOPlus, GOLabeler and NetGO. Values indicate the mean of the metric over genes (left) or terms (right), and error bars indicate a 
confidence interval of 95%, estimated using 10,000 bootstrap iterations on the gene set or term set, respectively.
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Fig. 3 | Fmax for every organism per gene and per term, with higher values being better. Comparison of HMMER, InterPro, HMMER + InterPro, S2F, Argot 
2.5, DeepGOPlus, GOLabeler and NetGO. Values indicate the mean of the metric over genes (left) or terms (right), and error bars indicate a confidence 
interval of 95%, estimated using 10,000 bootstrap iterations on the gene set or term set, respectively.
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Fig. 4 | Auc-ROc for every organism per gene and per term, with higher values being better. Comparison of HMMER, InterPro, HMMER + InterPro, 
S2F, Argot 2.5, DeepGOPlus, GOLabeler and NetGO. Values indicate the mean of the metric over genes (left) or terms (right), and error bars indicate a 
confidence interval of 95%, estimated using 10,000 bootstrap iterations on the gene set or term set, respectively.
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Fig. 5 | Auc-PR for every organism per gene and per term, with higher values being better. Comparison of HMMER, InterPro, HMMER + InterPro, 
S2F, Argot 2.5, DeepGOPlus, GOLabeler and NetGO. Values indicate the mean of the metric over genes (left) or terms (right), and error bars indicate a 
confidence interval of 95%, estimated using 10,000 bootstrap iterations on the gene set or term set, respectively.
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We show that this label propagation algorithm does not suffer 
from the problem described above for overlapping communities 
(Supplementary Note 6). Moreover, we prove that it satisfies the nec-
essary conditions to ensure that, for each pair of terms j and k such 
that j is an ancestor of k (in these cases Yij ≥Yik for every i), we have 
that Fij ≥ Fik for every i (the proof is provided in Supplementary 
Note 7). As a consequence, because Y is consistent with the GO 
structure, F will also be consistent.

Experimental set-up
We present the evaluation of S2F on bacteria from UniProtKB. 
Following the evaluation procedure used by most authors3,6 the per-
formance of S2F in predicting protein function was assessed both in 
a per-gene and in a per-term setting. In per-gene predictions, given 
a gene, we assess the performance of S2F at predicting a set of func-
tions associated to that gene. Conversely, in per-term predictions, 
given a function, we assess the performance of S2F at predicting a 
set of genes that perform that function.

The performance was assessed against a set of known experi-
mental annotations. Therefore, the bacteria used for testing were 
chosen so that they had at least a few experimentally annotated 
genes (to be able to assess the performance in a per-gene setting) 
while maintaining a reasonable diversity of annotated GO terms (to 
be able to assess the performance in a per-term setting) in the GOA 
database17. The ten bacteria in Table 1 satisfied our set of criteria 
(the criteria are detailed in Methods).

This set of bacteria provides a good testbed for our experiments. 
The amount of experimental annotations in these bacteria covers 
a wide spectrum, ranging from well-studied bacteria (for example, 
Escherichia coli) to more obscure ones that are not even included in 
STRING (for example, Brucella abortus).

In our experiments, we tested the performance at predicting the 
functional annotation for the whole genome for each of the ten bac-
teria, in turn. To avoid circular reasonings, when testing each bac-
terium, we carefully removed any functional information for that 
bacterium as well as for any phylogenetically close species. To do 
this, for each bacterium, we created a list of excluded species in two 
steps. First, starting from that bacterium, we navigated the NCBI 
taxonomy moving up two levels (that is, to the parent of the parent 
node) and we included in our list that node and all its descendants. 
Second, we added to the list all the nodes in the NCBI taxonomy 
that had a similar name. Having created a list of excluded species, 
we removed any information about these species from STRING, as 
well as information about their proteins from the GOA database. 
The detailed list of all organisms excluded when testing each spe-
cific bacterium is provided in the Supplementary Data.

Predicted annotations were evaluated against the existing func-
tional annotations (GOA files in Supplementary Data) using the 
well-established metrics that have been used in the CAFA chal-
lenge3: The maximum F measure Fmax, the minimum semantic dis-
tance Smin, and the areas under the receiver operating characteristic 
(ROC) and precision-recall (PR) curves AUC-ROC and AUC-PR 
metrics (for details see Supplementary Note 12).

Evaluation
We compared the performance of S2F against InterPro, HMMER, 
Argot 2.518, DeepGOPlus19, GOLabeler20 and NetGO21. InterPro and 
HMMER are among the best and most widely used sequence-based 
methods for predicting protein function for newly sequenced organ-
isms. The other four methods, although not explicitly conceived 
for this problem, could nevertheless be employed here as they are 
able to predict protein function using sequence information alone. 
Argot 2.518 and GOLabeler20 were among the top performers in the 
last edition of the CAFA competition6. NetGO21 and DeepGOPlus19 
were introduced after the last CAFA competition and were shown 
to perform very well against the top CAFA algorithms. (Details of 

the implementation, parameter settings and a description of these 
algorithms are provided in the Methods and Supplementary Notes 
14, 16 and 17).

Figures 2–5 show the AUC-ROC, AUC-PR, Fmax and Smin evalu-
ated per gene and per term for S2F and each competitor algorithm. 
(An interactive version of these results is also available in the result 
explorer on our website, https://www.paccanarolab.org/s2f). We can 
see that S2F outperformed the other methods according to the vast 
majority of performance measures for the ten bacteria—it is sur-
passed only in 4 of the 80 bacteria–measure combinations, most 
often on the AUC-ROC measure. To better appreciate the increase 
in performance offered by S2F, we also explicitly report the percent-
age of improvement of S2F versus each competitor for each of the ten 
organisms (Supplementary Figs. 53–59 in Supplementary Note 15).

Analysing these results, we see that, as expected, the accuracy of 
the S2F predictions does depend on the accuracy of InterPro and 
HMMER, which provide the initial seeds for the S2F diffusion pro-
cess. An interesting question is whether the improved performance 
of S2F is merely due to the fact that it combines the labels of InterPro 
and HMMER, or whether the diffusion of these labels through the 
transferred networks has a role in its performance. For this reason, 
we also report in the figures the performance of the linear combi-
nation of InterPro and HMMER labels that we used as seeds for 
the diffusion process in S2F (matrix Y). We can see that, with the 
exception only of the AUC-ROC for Brucella abortus, S2F shows an 
improvement when compared with the simple linear combination 
of the InterPro and HMMER outputs. This means that S2F is able to 
effectively combine the information of these labels together with the 
evolutionary information contained in the interolog graphs.

As we mentioned earlier, by integrating InterPro and HMMER 
we aimed to obtain seeds that combined the high accuracy and 
specificity offered by InterPro with the high coverage provided by 
HMMER. To check whether our linear combination, controlled 
by the parameter α, achieved this, we analysed how the different 
setting of α affected the S2F results (details of the experiments are 
described in Supplementary Note 13). Supplementary Figs. 48–51 
show that, in general, a combination of InterPro and HMMER seeds 
(0 < α < 1 gives much better results in terms of S2F performance 
than when using only seeds from either of them (α = 0 or α = 1). 
However, just looking at S2F performance, it is unclear how to set 
the value of α, as there is disagreement among the different perfor-
mance measures and organisms. At the same time, an important 
objective in real-world scenarios is to predict, for a given gene, a 
small set of terms that are highly accurate while being as specific 
as possible. Therefore, we analysed the information content of the 
top genes predicted by S2F for different values of α (Supplementary 
Fig. 52). Our results show that, in this scenario, high values of α (for 
example, α = 0.9) should be preferred.

We also evaluated the predictions obtained by diffusing the out-
puts of InterPro and HMMER, separately, on the interolog network 
W. Supplementary Figs. 11–14 (Supplementary Note 8; also avail-
able in the interactive data explorer on our website, https://www.
paccanarolab.org/s2f) show how our diffusion process is able to 
improve the labels obtained by InterPro (or HMMER). This means 
that our diffusion on combined interolog networks is an effective 
way to improve protein function prediction over simpler homology 
methods.

Our diffusion method was motivated by our desire to model 
the presence of overlapping communities in functional networks. 
It is unclear how to quantify exactly the number of proteins being 
shared across communities, as this is obscured by the relationships 
among functional labels as well as the noise and incompleteness of 
available annotations. However, the semantic similarity of proteins 
with known function can provide some insight, as we can quan-
tify the correlation between the graph onto which we diffuse, WS2F, 
and a graph of semantic similarities among functionally annotated 
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proteins, GSS. Supplementary Fig. 17 shows the values of these cor-
relations for each of the ten bacteria and compares them with cor-
relations between GSS and WGM, the graph used by GeneMANIA16, 
a diffusion-based method for protein function prediction in model 
organisms that does not explicitly model overlapping communities 
(for details of these experiments see Supplementary Note 6). We can 
see that WS2F shows higher correlation with the semantic similarity 
graph GSS in the great majority of the cases, for different organisms 
and across different GO ontologies.

Finally, to further demonstrate how S2F can facilitate biologi-
cal research by generating feasible hypotheses, we performed a 
prospective evaluation. We deployed S2F to make predictions 
using only data available up to December 2014 and we assessed its 
accuracy on proteins that were experimentally annotated between 
2015 and 2021. The experiments are detailed in Supplementary 
Note 11. Supplementary Figs. 44–47 show that, although the per-
formance of InterPro is relatively stable, for some bacteria the 
overall performance of HMMER (and, as a consequence, of the 
InterPro + HMMER combination) seems to worsen greatly. As 
expected, the performance of S2F decreases in these cases, but over-
all the diffusion process is able to alleviate the effect and compen-
sate for the lower quality of the seeds.

Discussion
The difficulty of protein function prediction, one of the most impor-
tant problems in computational biology, varies greatly depending on 
how much experimental information is available for the organism 
under investigation. Predictions for well-studied organisms can rely 
on multiple types of functional experimental evidence (for exam-
ple, gene expression and proteomics data) that can be represented 
in the form of graphs. For these organisms, network propagation 
approaches that amplify existing knowledge about the function of 
some of the proteins have been shown to be very effective5,16,22,23.

This Article introduces S2F, a method that applies a network 
propagation algorithm to organisms for which only sequence infor-
mation is available. The main idea is to create networks of interologs 
by systematically transferring functional data that are available for 
model organisms and to use these networks to combine and amplify 
a few preliminary GO labels (seeds) obtained through homology or 
identifiable protein features.

Our work shows that employing a diffusion process over net-
works of interologs is an effective way to improve predictions over 
simple homology. The improvement comes from combining infor-
mation: S2F effectively integrates homology information and iden-
tifiable protein features (preliminary GO labels from HMMER and 
InterPro) together with evolutionary information contained in the 
interolog graphs, through a diffusion process. S2F includes a novel 
network propagation algorithm that can account for the presence of 
overlapping communities of nodes with related functions.

Ultimately, the accuracy of S2F when predicting the function 
for a specific organism will depend on several factors, including 
the specificity and diversity of the preliminary GO labels, as well 
as the density of the interolog networks, which in turn depends on 
the evolutionary distance from organisms with existing functional 
experimental evidence. When predicting a GO term for a specific 
gene, these factors affect how many neighbours that gene has, how 
many of these genes have preliminary GO labels and how accurate 
these labels are. These factors are highly interleaved, and it is dif-
ficult to quantify the effect of each one individually. For example, 
it would seem reasonable to expect that S2F would generate bet-
ter predictions for more highly connected nodes. We tested this 
hypothesis by measuring the correlation between node degrees and 
the performance measures for the bacteria in this study. However, 
our results show that the correlation was either weak and nega-
tive or not statistically significant (Supplementary Note 10 and 
Supplementary Figs. 26–36).

The different interolog networks that we combine are extremely 
sparse, with virtually no overlap among them (Supplementary Figs. 
3 and 4). In this scenario, in terms of prediction performance, dif-
ferent combination methods would give results that are as good as 
the simple average of the networks (Supplementary Figs. 5–8 com-
pare our combination strategy, the network combination used by 
STRING15 and the simple average). However, our approach allows 
the linear combination of the different networks through learned 
coefficients, providing us with information about the relative impor-
tance and role of each network in the prediction (Supplementary 
Note 4). Our combination method is similar to the one used in 
GeneMANIA, but it allows us to learn these linear weights without 
relying on an initial set of known functional labels.

We note that the removal of functional information regarding 
each bacterium and its phylogenetically close species makes this 
problem much harder than the one tested in the regular CAFA com-
petition settings. For this reason, the performances for Argot 2.518, 
DeepGOPlus19, GOLabeler20 and NetGO21 seem generally lower than 
those reported earlier. Also, methods that are able to integrate global 
and local information seem to perform better than local methods 
in our setting. This can be seen by comparing the results obtained 
by S2F and the ‘consistency method’ (CM)24—another method that 
integrates global information—with the results obtained by NetGO, 
where the use of network information is limited locally to nodes 
that are just one link away from the query node. A performance 
comparison between our label propagation method and the CM is 
available in Supplementary Note 9.

In this Article we have focused and presented results for bacteria, 
but S2F can be applied to any organism, independently of how well 
functionally characterized it is. An earlier version of S2F optimized 
to use existing functional evidence for target organisms was sub-
mitted to the CAFA2 challenge3, where it ranked as one of the top 
performing methods.

The code for S2F is freely available at https://www.paccanarolab.
org/s2f. The S2F software is fast, robust and easy to set up and run. 
The software is fully documented, including a wiki with instruc-
tions for common use cases, instructions on how to use S2F to 
predict function for newly sequenced bacteria and details on how 
to replicate all our results, together with the necessary input data 
(Supplementary Data).

Methods
S2F seed inference. InterPro produces m binary matrices of predictions R(k), each 
of size (n × t) (here k∈{1, …, m} and m ≤ 14 is the number of models for which 
InterPro gives at least one prediction for the target organism). To combine these 
matrices while ensuring that the combination is consistent with the hierarchical 
structure of GO, we first up-propagate these associations according to the true 
path rule7,8, considering both the ‘is_a’ and ‘part_of ’ relations. Each matrix R(k) 
is up-propagated separately, so any convex combination of the up-propagated 
matrices will be consistent. We combine them to obtain a consistent InterPro seed 
set R∈R

n×t where each entry of R, Rij, is defined as

Rij =

∑m
k=1R

k
ij

m

S2F network transfer. STRING15 is a database that compiles several 3,123,056,667 
interactions between proteins in 5,090 organisms. Interactions are divided into 
seven types: ‘neighborhood’, ‘fusion’, ‘co-occurrence’, ‘experiments’, ‘co-expression’, 
‘textmining’ and ‘database’. Each interaction is annotated with a score that ranges 
from 0 to 1, representing the confidence that STRING assigns for the two proteins 
to be functionally related.

In our transfer procedure, two proteins A and A′ are considered to be 
orthologues if three conditions are met:

 (1) They are BLAST mutual best hits, with both e-values smaller than 1 × 10−6.
 (2) The percent identity is greater than 80%—this is to avoid transference be-

tween multi-domain proteins with different domain architecture.
 (3) Their ‘joint identity’ (geometric mean of the two percent identities) is above 

60%—Yu et al.12 showed that this condition achieves almost perfect accuracy 
at identifying interacting orthologues.
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When the same interaction can be transferred from multiple organisms, only 
the one with the highest ‘joint identity’ is kept. The pseudocode of the algorithm 
for building a collection of transferred networks for the target organism is provided 
in Supplementary Algorithm 1 (Supplementary Note 3). S2F only considers 
networks with at least three edges; that is, for every interaction type in STRING, we 
consider the transferred network r only if W(r) contains at least three values.

Finally, a homology network is added to the collection of interolog networks 
to increase the combined network connectivity and facilitate the diffusion process. 
The homology network W(h) is defined as the negative log of the BLAST e-value for 
every pair of proteins.

S2F network combination. Given p networks W(r) with r∈{1, …, p}, we combine 
them into a single network W using a weighted linear combination. The vector of 
weights ĉ∈R

p, and bias ˆb are learned by minimizing

(
ĉ, ˆb

)
= argmin

c,b

∑

i, j

(

b +

p∑

r=1
crW(r)

ij − Tij

)2

This linear regression can be solved efficiently, and we can interpret each 
learned coefficient cr as representing how much each network r contributes to the 
combination. An analysis of these coefficients is provided in Supplementary Note 
4.

S2F label propagation. The weighted Jaccard coefficient matrix J is defined 
elementwise as

Jij =
∑

kWikWjk
∑

kWik +
∑

kWjk −
∑

kWikWjk
.

Thus, the element Jij relates to how much elements i and j belong to the same 
community in network W. For a given term k, we learn the kth column of matrix F, 
which we denote by Fk, by minimizing the cost function Q (Fk):

Q(Fk) =

n∑

i=1
(Fik − Yik)

2
+

λ

2

n∑

i=1

1
di

n∑

j=1
JijWij

(
Fik − Fjk

)2

Similar to the cost function used by the CM24, ours is the sum of two terms. 
The role of the first term is to conserve the initial labels Yik—this term is minimized 
when the node labels Fik are the same as the initial labels. The second term accounts 
for the consistency of the labels of adjacent nodes (reflecting the guilt-by-association 
principle)—this term is minimized when adjacent nodes have similar labels (that is, 
the difference between Fik and Fjk becomes small). Note that the importance of the 
difference between Fik and Fjk is proportional to JikWik, which models the community 
effect—the more i and j are connected through their neighbours, the greater their 
contribution to the cost function. Furthermore, notice that

1
di

=

1
∑

jJijWij

is a normalization factor that gives to each protein in the network similar ability to 
influence its neighbours, independently of its degree.

The closed-form solution that minimizes Q(Fk) is

F∗k = (I + λL)−1Yk

where Yk is the initial labelling, L = DS2F − WS2F is the Laplacian of WS2F, whose entry 
WS2F

ij  is defined as

WS2F
ij =

1
2

(
1
di

+

1
dj

)

JijWij,

and DS2F is a diagonal matrix where the ith diagonal element is DS2F
ii =

∑
jW

S2F
ij .

Bacteria selection criteria and datasets. The criteria we used for selecting bacteria 
were as follows:
•	 The bacteria must have at least ten functional annotations with an experimen-

tal or curated GO evidence code (EXP, IDA, IPI, IMP, IGI, IEP, TAS or IC) in 
the GOA database17.

•	 The bacteria must have at least eight terms annotated with at least three genes 
after up-propagation, for each GO subdomain—biological process (BP), 
molecular function (MF) and cellular component (CC).

In our experiments, we used STRING version 11.0. All sequences in FASTA 
format were downloaded from UniProtKB/Swiss-Prot using the taxonomy 
identifiers listed in Table 1. The GO annotations were downloaded from the GOA 
database17. All datasets were downloaded in April 2020. We used HMMER version 
3.1b2, InterProScan version 5.42–78.0 and blastp from BLAST 2.6.0+.

Competitor algorithms. In all our experiments, to simulate a real case scenario 
for the problem of predicting function in newly sequenced organisms, for each 

bacterium we removed any functional information regarding that bacterium as 
well as any functional information about species that are phylogenetically close 
(the list of all organisms excluded is provided in the Supplementary Data).

GOLabeler20 and its successor, NetGO21, are only offered as web services, and 
use all the data available from their sources (namely GOA, STRING, UniProtKB, 
InterPro) for their prediction. Therefore, the results for NetGO and GOLabeler 
presented here were obtained running our own implementation of these systems 
that had been trained using datasets from which all the aforementioned functional 
information had been removed. All the parameters of the component models as 
well as the learning to rank ensemble were set using the default values suggested by 
the authors20,21. A detailed description of how to prepare the input data and how to 
use our implementation of these methods is provided in Supplementary Note 17.

Argot 2.518 was run on its web server (http://www.medcomp.medicina.
unipd.it/Argot2-5/). For each bacterium, we first used BLAST and HMMER to 
obtain alignments between its proteins and a version of UniProtKB from which 
the sequences of excluded organisms (for that bacterium) were omitted. These 
alignments were then submitted to the Argot 2.5 web server.

DeepGOPlus19 was run using the code from the latest stable version available 
(1.0.1). To remove the information from phylogenetically close organisms, we 
added some pre-processing steps to the input files and small corrections were 
made to the prediction script. A detailed guide on how to set up and run the 
pre-processing and prediction is described in Supplementary Note 16.

InterPro was run using InterProScan version 5.42–78.0, the output file was 
then processed to extract the predictions that included GO terms.

HMMER version 3.1b2 was run against a GO annotation file that was 
pre-processed to keep only the experimental or curated evidence codes (EXP, IDA, 
IPI, IMP, IGI, IEP, TAS or IC). The output file was post-processed to remove any 
alignment that came from an organism that had been excluded in the prediction.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The input sequence files25 in FASTA format for all the organisms used in this 
paper are available at https://doi.org/10.5281/zenodo.5514323. The same URL 
also contains the detailed list of all organisms excluded when testing each specific 
bacterium.

code availability
The code for S2F is freely available and maintained at https://www.paccanarolab.
org/s2f. The exact version26 used for this publication is available at https://doi.
org/10.5281/zenodo.5513071.

Received: 8 December 2020; Accepted: 26 October 2021;  
Published: xx xx xxxx

References
 1. Cruz, L. M., Trefflich, S., Weiss, V. A. & Castro, M. A. A. Protein function 

prediction. Methods Mol. Biol. 1654, 55–75 (2017).
 2. Shehu, A., Barbará, D. & Molloy, K. in Big Data Analytics in Genomics (ed. 

Wong, K.-C.) 225–298 (Springer, 2016); https://doi.org/10.1007/978-3- 
319-41279-5_7

 3. Jiang, Y. et al. An expanded evaluation of protein function prediction 
methods shows an improvement in accuracy. Genome Biol. 17, 184 (2016).

 4. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. 
Genet. 25, 25–29 (2000).

 5. Cowen, L., Ideker, T., Raphael, B. J. & Sharan, R. Network propagation: a 
universal amplifier of genetic associations. Nat. Rev. Genet. 18, 551–562 
(2017).

 6. Zhou, N. et al. The CAFA challenge reports improved protein function 
prediction and new functional annotations for hundreds of genes through 
experimental screens. Genome Biol. 20, 244 (2019).

 7. Valentini, G. True path rule hierarchical ensembles for genome-wide gene 
function prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 832–847 
(2011).

 8. Friedberg, I. & Radivojac, P. in The Gene Ontology Handbook (eds Dessimoz, 
C. & Škunca, N.) 133–146 (Springer, 2017); https://doi.
org/10.1007/978-1-4939-3743-1_10

 9. Obozinski, G., Lanckriet, G., Grant, C., Jordan, M. I. & Noble, W. S. 
Consistent probabilistic outputs for protein function prediction. Genome Biol. 
9, S6 (2008).

 10. Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and 
access to protein sequence annotations. Nucleic Acids Res. 47, D351–D360 
(2019).

 11. Walhout, A. J. et al. Protein interaction mapping in C. elegans using proteins 
involved in vulval development. Science 287, 116–122 (2000).

 12. Yu, H. et al. Annotation transfer between genomes: protein-protein interologs 
and protein-DNA regulogs. Genome Res. 14, 1107–1118 (2004).

NATuRE MAcHiNE iNTElligENcE | www.nature.com/natmachintell

http://www.medcomp.medicina.unipd.it/Argot2-5/
http://www.medcomp.medicina.unipd.it/Argot2-5/
https://doi.org/10.5281/zenodo.5514323
https://www.paccanarolab.org/s2f
https://www.paccanarolab.org/s2f
https://doi.org/10.5281/zenodo.5513071
https://doi.org/10.5281/zenodo.5513071
https://doi.org/10.1007/978-3-319-41279-5_7
https://doi.org/10.1007/978-3-319-41279-5_7
https://doi.org/10.1007/978-1-4939-3743-1_10
https://doi.org/10.1007/978-1-4939-3743-1_10
http://www.nature.com/natmachintell


ArticlesNATuRe MAcHiNe iNTelligeNce ArticlesNATuRe MAcHiNe iNTelligeNce

 13. Ben-Hur, A. & Noble, W. S. Kernel methods for predicting protein-protein 
interactions. Bioinformatics 21, i38–i46 (2005).

 14. Sharan, R. et al. Conserved patterns of protein interaction in multiple species. 
Proc. Natl Acad. Sci. USA 102, 1974–1979 (2005).

 15. Szklarczyk, D. et al. STRING v11: protein-protein association networks with 
increased coverage, supporting functional discovery in genome-wide 
experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).

 16. Mostafavi, S., Ray, D., Warde-Farley, D., Grouios, C. & Morris, Q. 
GeneMANIA: a real-time multiple association network integration algorithm 
for predicting gene function. Genome Biol. 9, S4 (2008).

 17. Huntley, R. P. et al. The GOA database: gene ontology annotation updates for 
2015. Nucleic Acids Res. 43, D1057–D1063 (2015).

 18. Lavezzo, E., Falda, M., Fontana, P., Bianco, L. & Toppo, S. Enhancing protein 
function prediction with taxonomic constraints—the Argot2.5 web server. 
Methods 93, 15–23 (2016).

 19. Kulmanov, M. & Hoehndorf, R. DeepGOPlus: improved protein function 
prediction from sequence. Bioinformatics 36, 422–429 (2020).

 20. You, R. et al. GOLabeler: improving sequence-based large-scale protein 
function prediction by learning to rank. Bioinformatics 34, 2465–2473 (2018).

 21. You, R. et al. NetGO: improving large-scale protein function prediction with 
massive network information. Nucleic Acids Res. 47, W379–W387 (2019).

 22. Makrodimitris, S., van Ham, R. C. H. J. & Reinders, M. J. T. Automatic gene 
function prediction in the 2020s. Genes 11, 1264 (2020).

 23. Cao, M. et al. Going the distance for protein function prediction:  
a new distance metric for protein interaction networks. PLoS ONE 8,  
e76339 (2013).

 24. Zhou, D., Bousquet, O., Lal, T. N., Weston, J. & Schölkopf, B. Learning with 
local and global consistency. In Proc. 16th International Conference on Neural 
Information Processing Systems (eds Thrun, S. et al.) 321–328 (MIT, 2004).

 25. Torres, M., Yang, H., Romero, A. E. & Paccanaro, A. Input data for 'Protein 
function prediction for newly sequenced organisms'. Zenodo https://doi.
org/10.5281/ZENODO.5514323 (2021).

 26. Torres, M., Yang, H., Romero, A. E. & Paccanaro, A. Source code for 'Protein 
function prediction for newly sequenced organisms'. Zenodo https://doi.
org/10.5281/ZENODO.5513071 (2021).

 27. UniProt Consortium UniProt: a worldwide hub of protein knowledge. Nucleic 
Acids Res. 47, D506–D515 (2019).

Acknowledgements
The first idea for this project was conceived in discussions with T. Gianoulis, who we 
remember dearly for her intelligence, kindness, enthusiasm and passion for research. We 
also thank P. Bhat, T. Nepusz, J. Caceres, M. Frasca, G. Valentini, A. Devoto, L. Bögre, 
R. Sasidharan and M. Gerstein for many important and stimulating discussions. A.P. 
was supported by Biotechnology and Biological Sciences Research Council (https://
bbsrc.ukri.org/) grants numbers BB/K004131/1, BB/F00964X/1 and BB/M025047/1, 
Medical Research Council (https://mrc.ukri.org) grant number MR/T001070/1, Consejo 
Nacional de Ciencia y Tecnología Paraguay (https://www.conacyt.gov.py/) grants 
numbers 14-INV-088 and PINV15–315, National Science Foundation Advances in 
Bio Informatics (https://www.nsf.gov/) grant number 1660648, Fundação de Amparo 
à Pesquisa do Estado do Rio de Janeiro grant number E-26/201.079/2021 (260380) and 
Fundação Getulio Vargas.

Author contributions
A.P. conceived the study. A.P. and H.Y. devised the algorithms, developed the prototype 
and performed preliminary evaluations. M.T. and A.E.R. implemented and extended the 
algorithms and evaluation metrics, performed large-scale experiments and analysed the 
results. A.P., M.T. and A.E.R. wrote the manuscript and evaluated the biological relevance 
of the results. All authors discussed the results and implications. A.P. supervised the project.

competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s42256-021-00419-7.

Correspondence and requests for materials should be addressed to Alberto Paccanaro.

Peer review information Nature Machine Intelligence thanks Jiecong Lin and the other, 
anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

NATuRE MAcHiNE iNTElligENcE | www.nature.com/natmachintell

https://doi.org/10.5281/ZENODO.5514323
https://doi.org/10.5281/ZENODO.5514323
https://doi.org/10.5281/ZENODO.5513071
https://doi.org/10.5281/ZENODO.5513071
https://bbsrc.ukri.org/
https://bbsrc.ukri.org/
https://mrc.ukri.org
https://www.conacyt.gov.py/
https://www.nsf.gov/
https://doi.org/10.1038/s42256-021-00419-7
http://www.nature.com/reprints
http://www.nature.com/natmachintell





	Protein function prediction for newly sequenced organisms
	Results
	S2F seed inference. 
	S2F network transfer. 
	S2F network combination. 
	S2F label propagation. 

	Experimental set-up
	Evaluation
	Discussion
	Methods
	S2F seed inference
	S2F network transfer
	S2F network combination
	S2F label propagation
	Bacteria selection criteria and datasets
	Competitor algorithms
	Reporting Summary

	Acknowledgements
	Fig. 1 Overview of the S2F approach.
	Fig. 2 Smin metric for every organism per gene and per term, with lower values being better.
	Fig. 3 Fmax for every organism per gene and per term, with higher values being better.
	Fig. 4 AUC-ROC for every organism per gene and per term, with higher values being better.
	Fig. 5 AUC-PR for every organism per gene and per term, with higher values being better.
	Table 1 List of bacteria that satisfy the selection criteria, with number of genes and annotations.




